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Abstract Metallic glasses have received considerable

attention in comparison to normal metallic materials due to

their superior physical and mechanical properties. These

systems possess large under cooled region, DT (DT =

Tx - Tg where, Tx is crystallization temperature and Tg is

glass transition temperature) and hence increased thermal

stability against crystallization. Due to this, the study of

their crystallization kinetics is important and interesting. It

is interesting because of the fact that, crystallization

becomes multi-step process due to several components

present in these systems. In this paper, we report the

experimental investigations of crystallization of Zr52Cu18-

Ni14Al10Ti6 glassy alloy system, which is among the best

non-beryllium containing glasses, using differential scan-

ning calorimetry (DSC). The crystallization, as expected,

consists of multiple steps. Interestingly, the peak heights of

these steps vary with heating rate. At lower heating rates,

first peak is most prominent and subsequently diminishes

with increase in heating rate with last peak prominence

visible at highest heating rate. Both, iso-kinetic and iso-

conversional methods of analysis of kinetics of crystalli-

zation have been used to evaluate the activation energy and

Avrami exponents and consistent results are obtained.

Keywords Crystallization kinetics � Isoconversional �
Isokinetic � Metallic glass � Activation energy

Introduction

Metallic glasses are presently among the most actively

studied metallic materials. A large number of multi-com-

ponent systems with excellent glass forming ability (GFA),

e.g., Pd- and Zr-based metallic glasses with critical diam-

eters larger than 1 cm have been developed. In this work,

the kinetics of the crystallization of Zr52Cu18Ni14Al10Ti6
glass forming alloy have been studied, which is among the

best nonberyllium containing glasses, making them easier

to process and to handle [1]. The crystallization kinetics

can be studied with the help of thermo-analytical tech-

niques, e.g., differential scanning calorimetry (DSC) and

differential thermal analyzer (DTA). These DSC/DTA

experiments can be carried out in isothermal as well as

non-isothermal [2–6] environment. To analyze the data

obtained from DSC and hence to obtain kinetic parameters

of the crystallization processes (such as activation energy,

rate constant, etc.), there are several methods available in

literature. These methods are generally based on either the

isokinetic hypothesis or the isoconversional principle and

they can be accordingly classified as (1) isokinetic methods

where rate of reaction is considered to be the same

throughout the temperature/time range; and (2) isoconver-

sional methods, which are generally used for non-isother-

mal (linear heating) analysis, assume that the reaction rate

at a constant degree of transformation is only a function of

temperature. Therefore, in the isokinetic analysis, the

kinetic parameters are assumed to be constant with respect

to time and temperature; while in case of isoconversional

study, the kinetic parameters are considered to be
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dependent on the degree of transformation at different

temperature and time [7].

Experimental methods

Specimens of amorphous Zr52Cu18Ni14Al10Ti6 alloy were

prepared by a melt spinning technique. The linear heating

experiments were carried out on the as-quenched samples

at four different linear heating rates (5, 10, 15, and 20 �C/

min) in a DSC (DSC-50, Shimadzu, Japan) from room

temperature to 833 K in air. The DSC has a minimum

detection sensitivity of 10 lW. The samples of the metallic

glass (5–6 mg) under consideration and the reference

material a-Al2O3 were crimped in aluminum pans.

Theory

To study the phase transformation, which involves nucle-

ation and growth, many methods are developed. Most of

the methods depend on the transformation rate equation

given by Kolmogorov, Johnson, Mehl, and Avrami [8–12],

popularly known as KJMA equation, basically derived

from experiments carried out under isothermal conditions.

The KJMA rate equation is given by

da
dt
¼ nkð1� aÞ½� lnð1� aÞ�ðn�1Þ=n ð1Þ

where, a is degree of transformation at a given time t,

n Avrami (growth) exponent, k the rate constant.

The Arrhenius form of the rate constant is given by

kðTÞ ¼ k0 exp � E

RT

� �
ð2Þ

where, k0 is pre-exponential factor, E activation energy,

and R universal gas constant.

KJMA rate equation is based on some important

assumptions and it has been suggested that the KJMA

kinetic equation is accurate for reactions with linear growth

subject to several conditions [13].

The isoconversional methods are also known as model-

free methods. Therefore, the kinetic analysis using these

methods is more deterministic and gives reliable values of

activation energy E, which depend on degree of transfor-

mation, a. However, only activation energy will not give a

perfect picture of crystallization kinetics. The microstruc-

tural information (e.g., dimensionality of the growth) of the

precipitating phase during the transformation is also very

important for understanding the whole kinetics of crystal-

lization. Microstructural information would be known to us

when we take the isokinetic methods into account. There-

fore, the complementary use of both the methods is more

useful for understanding the kinetics of crystallization.

Results and discussion

The DSC thermograms at four different heating rates (5,

10, 15, 20 deg/min) are shown in Fig. 1. The thermo-

grams show three-stage crystallization process. The peak

height of these steps varies with the heating rate. At lower

heating rates, first peak is much distinct and diminishes as

we go for higher heating rates and last peak visibility

increases with increasing heating rate. Second peak is not

much prominent in the 5, 10, and 15 deg/min heating

rates. In this paper, the first peak is taken into consider-

ation for the kinetic analysis. Glass transition temperature

is not very evident in all four thermograms. The analysis

of DSC data to evaluate the kinetic parameters can be

obtained from non-isothermal rate laws by both isokinetic

also known as model fitting methods and isoconversional

methods.

Isoconversional analysis

Isoconversional methods evaluate the activation energy

values at progressive degrees of conversion Ea without

modelistic assumptions. The isoconversional methods can

be broadly classified into two categories: (1) isothermal

methods and (2) non-isothermal methods. The latter can

further be classified as differential and integral methods.

The isoconversional methods are based on the basic kinetic

equation:

da
dt
¼ kðTÞf ðaÞ ð3Þ

k(T) is the rate constant as given by Eq. 2 and f(a) is the

reaction model which in case of KJMA formalism gives

Eq. 1. The integral form of the above Eq. 3 can be given by
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Fig. 1 DSC thermograms of the metallic glass Zr52Cu18Ni14Al10Ti6
at different heating rates
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gðaÞ ¼
Za

0

f ðaÞ½ ��1
da ¼ k0

b

ZT

0

exp � E

RT

� �
dT ð4Þ

As mentioned earlier, exact solution of the temperature

integral is not available and various approximations made

for this has resulted into different methods. We have

discussed a few most commonly used methods and kinetic

parameters are calculated with the help of them. Different

isoconversional methods are analyzed and discussed in

detail by Starink [14].

Linear integral isoconversional methods

Kissinger–Akahira–Sunose (KAS) method Kissinger,

Akahira, and Sunose [15, 16] used the approximation given

by Coats and Redfern [17] to evaluate the integral in the

rate Eq. 4. KAS method is based on the expression

ln
b
T2

� �
¼ ln

k0R

Eg að Þ

� �
� E

RT
ð5Þ

The activation energy can be evaluated from the slope of

plot ln(b/T2) vs. 1000/T for constant conversion, a (Fig. 2)

Values of E are given in Table 1. The discussion given

ahead describes some of the methods available in the

literature which are basically special cases of the KAS

Eq. 5.

(i) Kissinger method: This well-known method assumes

that the reaction rate is maximum at the peak temperature

(Tp). This assumption also implies a constant degree of

conversion (a) at Tp. The equation used by Kissinger is

ln
b
T2

p

 !
¼ � E

RTp

þ ln
k0R

E

� �
ð6Þ

A plot of ln(b/Tp
2) vs. 1000/Tp (Fig. 3) gives an approxi-

mate straight line and the activation energy E and pre-

exponential factor k0 is calculated using the slope and the

intercept (Table 2).

(ii) Augis and Bennett’s method: This method was

suggested by Augis and Bennett [18] and is an extension of

Kissinger method showing its applicability to heteroge-

neous reaction described by Avrami expression. Apart

from the peak crystallization temperature it also incorpo-

rates the onset temperature of crystallization, To and it is

supposed to be a very accurate method of determining E

through the equation

ln
b

Tp � To

� �
 !

¼ � E

RTp

þ ln k0 ð7Þ

where Tp and To are the peak and the onset temperatures of

crystallization, respectively. The values of E and k0

obtained from the plot (ln(b/(Tp - To)) vs. 1000/Tp (Fig. 4)

are given in Table 2.
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Fig. 2 KAS plot at a = 0.2

Table 1 Local activation energy (E) at different conversion for dif-

ferent methods

a E/kJ mol-1

KAS OFW Friedman

0.1 264 ± 2 256.4 ± 2 245.5 ± 9

0.2 272 ± 2 269.5 ± 2 317.3 ± 7

0.3 278.8 ± 2 276 ± 2 303.9 ± 7

0.4 279.1 ± 2 276.3 ± 2 298.2 ± 3

0.5 280.7 ± 2 277.9 ± 2 295.7 ± 5

0.6 282.7 ± 3 279.7 ± 3 324 ± 5

0.7 285.7 ± 3 282.6 ± 3 320.7 ± 4

0.8 294 ± 3 290.5 ± 3 371.1 ± 4

0.9 303.8 ± 2 299.9 ± 2 360.5 ± 2
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Fig. 3 Kissinger plot
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Further,

n ¼ 2:5
T2

p

DT E
R

� � ð8Þ

where DT is the full width at half maximum of the DSC

curve. n derived using Eq. 8 is given in Table 3.

(iii) Boswell method: Boswell method [19] determines

the activation energy at peak temperature (Table 2) using

the following equation

ln
b
Tp

� �
¼ � E

RTp

þ const ð9Þ

Plot of ln(b/Tp) vs. 1000/Tp (Fig. 5) gives the activation

energy E listed in Table 2.

Ozawa–Flynn–Wall (OFW) method In this method [20,

21] the temperature integral in Eq. 4 is simplified by using

the Doyle’s approximation [22–24] and hence we obtain

the following equation:

ln b ¼ �1:0516
E að Þ
RTa
þ const ð10Þ

The plot of ln b vs. 1/Ta (Fig. 6) gives the slope -1.0516

E(a)/R from which the activation energy has been evaluated

(Table 1). At Ta = Tp, (Ozawa method) the value of

E determined (from Fig. 7) using Eq. 10 is given in Table 2.

Linear differential isoconversional method

The method suggested by Friedman [25] sometimes known

as transformation rate-isoconversional method, utilizes the

differential of the transformed fraction and hence it is

Table 2 Activation energy (E) and pre-exponential factor (k0)

derived using various methods

Method E/kJ mol-1 k0/s-1

Kissinger 259.9 ± 2 4.86 9 1017

Ozawa 258.1 ± 2 –

Augis and Bennett 271.7 ± 1 3.33 9 1018

Boswell 256.4 ± 2 –

Gao and Wang 278.4 ± 3 –

–3.8

–4.0

–4.2

–4.4

–4.6

–4.8

–5.0

–5.2

–5.4

1.42 1.43 1.44 1.45 1.46 1.47

1000/Tp/K–1

In
( β

/T
p–

T
o)

Fig. 4 Augis and Benett plot

Table 3 Values of Avrami exponent (n) from different methods

Heating rate Augis and Bennett Matusita and Sakka

4 2.5 2.7

6 3.5 2.9

8 3.1 2.9

10 2.8 3.0
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Fig. 5 Boswell plot

–1.0

–1.2

–1.4

–1.6

–1.8

–2.0

–2.2

–2.4

–2.6
1.43 1.44 1.45 1.46 1.47 1.48

1000/T/K–1

α = 0.2

In
 β

Fig. 6 OFW plot a = 0.2

162 A. T. Patel, A. Pratap

123



called differential isoconversional method. Substituting

value of k(T) in Eq. 3 Friedman derived a linear differential

isoconversional expression as

ln
da
dt

� �
a

¼ ln b
da
dT

� �
a

¼ ln Af að Þð Þ � Ea

RTa
ð11Þ

by taking logarithm on both sides of Eq. 3. For a constant

a, the plot of ln b da
dT

� �
vs 1

T

� �
should be a straight line

(Fig. 8) whose slope gives us the value of E.

Since this method does not take any mathematical

approximation for the temperature integral, it is considered

to give accurate estimate of E. Thus the method does not

require any assumption on f(a), i.e., it is a so-called model-

free method. However, being a differential method, its

accuracy is limited by the signal noise.

A method suggested by Gao and Wang [26] is a special

case of the Friedman method. This method uses the fol-

lowing expression to determine the activation energy. The

value of activation energy obtained is given in Table 2.

ln b
da
dTp

� �
¼ � E

RTp

þ const ð12Þ

A plot of ln b da
dTp

� �
vs. 1

Tp

� �
is given in Fig. 9.

The values of local activation energy Ea as a function of

a has been given in Table 1 using three different isocon-

versional methods namely, KAS, OFW, and Friedman.

This result has also been shown graphically in Fig. 10. It

appears from this graph that results obtained using KAS

and OFW methods lie quite close to each other while

Friedman points are quite scattered.
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Isokinetic methods

Matusita and Sakka method

Matusita and Sakkka [27] suggested the following equation

specifically for the non-isothermal data

ln½� lnð1� aÞ� ¼ �n ln b� mE

RT
þ const. ð13Þ

where m is an integer depends on the dimensionality of the

crystal and the Avarami exponent n depends on the

nucleation process. For a constant temperature, the plot of

ln[-ln(1 - a)] vs. ln b gives a straight line (Fig. 11) and

the slope gives the value of n. Here we have taken seven

different constant temperatures and the average value of n

comes out to be 2.66. The plot of ln[-ln(1 - a)] vs. 1/T at

constant heating rate should be a straight line and the value

of m is obtained from the slope (Fig. 12). Different values

of n are derived from these m values by using n = (m ? 1)

and are given in Table 3.

Modified Kissinger method

The modified Kissinger equation [28] given below can be

utilized to derive the activation energy (E).

ln
bn

T2
p

 !
¼ �mE

RTp

þ const ð14Þ

where E is the activation energy for crystallization, Tp is

the peak temperature, and R is the universal gas constant. m

is known as the dimensionality of growth and for the

sample without preannealing treatment, m = (n - 1). In

order to derive E from this equation, one must know the

value of n. The n value can be obtained from the slope of

the plot of ln[-ln(1 - a)] vs. ln b at constant temperature.

In order to evaluate E, the average value of n = 2.66 is

substituted in Eq. 14. Then the plot of ln bn

T2
p

� �
vs. 1

Tp

(Fig. 13) gives the values of activation energy E, which is

428.12 kJ/mol.

Conclusions

Both model dependent isokinetic and model-free isocon-

versional methods have been utilized to study the crystal-

lization kinetics of the first peak of the crystallization

process involved in the presently taken system namely

Zr52Cu18Ni14Al10Ti6 metallic glass. The isokinetic meth-

ods, though model dependent, provide single value of

activation energy. Besides, they also provide Avrami

exponent n, which gives an idea about the dimensionality
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of the growth of crystals. Isoconversional techniques, on

the other hand, provide quite accurate values of Ea as a

function of a as these analytical methods are supposed to

be model free. It is obvious from the results obtained

through KAS and OFW equations that activation energy

initially increases with a. However, from a = 0.4 to 0.5,

there is an incremental increase in Ea. Thereafter, Ea

increases again with a. This interesting result is an indi-

cation of the fact that even before first step of crystalliza-

tion is completed, second step starts. The activation energy,

E obtained using the Friedman method, on the other hand,

show appreciable variation and there is no systematic trend.

This is attributed to the signal noise involved [29]. It is also

noteworthy that the activation energy values using various

isoconversional methods and the special cases of isocon-

versional techniques namely Kissinger, Ozawa, Augis and

Benett, Boswell, and Gao and Wang are quite consistent,

whereas modified Kissinger method overestimates it. The

isoconversional approach has been utilized to obtain the

dependence of activation energy on transformed fraction

for few Fe-based multicomponent amorphous alloys [30].

Various forms of the conversion function have been used

and Sestak–Berggren function in temperature-programmed

reduction has been recently reported [31].
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